Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(1): 394-412, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924435

RESUMO

AIMS: Epidermal Neural Crest Stem Cells (EPI-NCSCs) have emerged as prospective ideal candidates to meet the fundamental requirements of cell-based therapies in neurodegenerative disorders. The present study aimed to identify the potential of metformin in driving EPI-NCSCs to neuronal/glial differentiation and express neurotrophic factors as well as assess their therapeutic potential for mitigating the main behavioral manifestations of chemotherapy-induced neurotoxicity (CIN). MAIN METHODS: EPI-NCSCs were extracted from the bulge region of hair follicle. Following expansion, transcript and protein expression profiles of key markers for stemness (Nestin, EGR-1, SOX-2 and 10), neurotrophic activity (BDNF, GDNF, NGF, FGF-2, and IL-6), and neuronal (TUB3, DCX, NRF and NeuN) and glial (PDGFRα, NG2, GFAP, and MBP) differentiation were determined on days 1 and 7 post-treatment with 10 and 100 µM metformin using real time-PCR and immunocytochemistry methods. Then, the in vivo function of metformin-treated stem cells was evaluated in the context of paclitaxel CIN. To do so, thermal hyperalgesia, mechanical allodynia, and spatial learning and memory tests were evaluated by Hotplate, Von Frey, and Morris water maze tests. KEY FINDINGS: Our result indicated that exposure of EPI-NCSCs to metformin was associated with progressive decline in stemness markers and enhanced expression levels of several neurotrophic, neuron and oligodendrocyte-specific markers. Further, it was observed that intranasal metformin-treated EPI-NCSCs improved the cognitive impairment, and mechanical and thermal hypersensitivity induced by paclitaxel in rats. SIGNIFICANCE: Collectively, we reasoned that metformin pretreatment of EPI-NCSCs might further enhance their therapeutic benefits against CIN.


Assuntos
Células-Tronco Neurais , Ratos , Animais , Paclitaxel/efeitos adversos , Paclitaxel/metabolismo , Crista Neural , Estudos Prospectivos , Fenótipo
2.
CNS Neurosci Ther ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721413

RESUMO

Despite the great body of research done on Alzheimer's disease, the underlying mechanisms have not been vividly investigated. To date, the accumulation of amyloid-beta plaques and tau tangles constitutes the hallmark of the disease; however, dysregulation of the mammalian target of rapamycin (mTOR) seems to be significantly involved in the pathogenesis of the disease as well. mTOR, as a serine-threonine protein kinase, was previously known for controlling many cellular functions such as cell size, autophagy, and metabolism. In this regard, mammalian target of rapamycin complex 1 (mTORC1) may leave anti-aging impacts by robustly inhibiting autophagy, a mechanism that inhibits the accumulation of damaged protein aggregate and dysfunctional organelles. Formation and aggregation of neurofibrillary tangles and amyloid-beta plaques seem to be significantly regulated by mTOR signaling. Understanding the underlying mechanisms and connection between mTOR signaling and AD may suggest conducting clinical trials assessing the efficacy of rapamycin, as an mTOR inhibitor drug, in managing AD or may help develop other medications. In this literature review, we aim to elaborate mTOR signaling network mainly in the brain, point to gaps of knowledge, and define how and in which ways mTOR signaling can be connected with AD pathogenesis and symptoms.

3.
CNS Neurosci Ther ; 29(1): 91-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184817

RESUMO

AIMS: The peptidyl-prolyl cis/trans isomerase, Pin1, has a protective role in age-related neurodegeneration by targeting different phosphorylation sites of tau and the key proteins required to produce Amyloid-ß, which are the well-known molecular signatures of Alzheimer's disease (AD) neuropathology. The direct interaction of miR-140-5p with Pin1 mRNA and its inhibitory role in protein translation has been identified. The main purpose of this study was to investigate the role of miRNA-140-5p inhibition in promoting Pin1 expression and the therapeutic potential of the AntimiR-140-5p in the Aß oligomer (AßO)-induced AD rat model. METHODS: Spatial learning and memory were assessed in the Morris water maze. RT-PCR, western blot, and histological assays were performed on hippocampal samples at various time points after treatments. miRNA-140-5p inhibition enhanced Pin1 and ADAM10 mRNA expressions but has little effect on Pin1 protein level. RESULTS: The miRNA-140-5p inhibitor markedly ameliorated spatial learning and memory deficits induced by AßO, and concomitantly suppressed the mRNA expression of inflammatory mediators TNFα and IL-1ß, and phosphorylation of tau at three key sites (thr231, ser396, and ser404) as well as increased phosphorylated Ser473-Akt. CONCLUSION: According to our results, Antimir-140-mediated improvement of AßO-induced neuronal injury and memory impairment in rats may provide an appropriate rationale for evaluating miR-140-5p inhibitors as a promising agent for the treatment of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Ratos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , MicroRNAs/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Proteínas tau/metabolismo
4.
Mol Neurobiol ; 59(10): 6281-6306, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35922728

RESUMO

It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
5.
CNS Neurosci Ther ; 28(9): 1425-1438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715988

RESUMO

AIMS: Regenerative medicine literature has demonstrated that the therapeutic potentials of mesenchymal stem cells (MSCs) in experimental stroke are attributed to secreted bioactive factors rather than to cell replacement. Here, we explored the effects of secretome or conditioned medium (CM) derived from human embryonic stem cell-derived MSCs (hESC-MSCs) on hippocampal neurogenesis, inflammation, and apoptosis in experimental stroke. METHODS: Ischemic stroke was induced by right middle cerebral artery occlusion (MCAO) in male Wistar rats, and CM was infused either one time (1-h post-stroke; CM1) or three times (1-, 24-, and 48-h post-stroke; CM3) into left lateral ventricle. Neurogenesis markers (Nestin, Ki67, Doublecortin, and Reelin) were assessed at transcript and protein levels in the dentate gyrus of the hippocampus on day seven following MCAO. In parallel, changes in the gene expression of markers of apoptosis (Bax and Bim, as well as an anti-apoptotic marker of Bcl2), inflammation (IL-1ß and IL-6, as well as IL-10 as an anti-inflammatory cytokine), trophic factors (BDNF, GDNF, NGF, and NT-3), and angiogenesis (CD31 and VEGF) in the hippocampus were assessed. RESULTS: Our results demonstrate that CM3 treatment could stimulate neurogenesis and angiogenesis concomitant with inhibition of inflammation, apoptosis, and neuronal loss in ischemic brains. Furthermore, rats treated with CM3 exhibited upregulation in neurotrophic factors. CONCLUSION: Our results suggest that hESC-MSC-CM could promote neurogenesis and protect brain tissue from ischemic injury, partly mediated by induction of angiogenesis and neurotrophic factors and inhibition of inflammatory and apoptotic factors expression.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Infarto da Artéria Cerebral Média/complicações , Inflamação/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurogênese , Neuroproteção , Ratos , Ratos Wistar , Secretoma , Acidente Vascular Cerebral/metabolismo
6.
Exp Gerontol ; 164: 111812, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476966

RESUMO

Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aß) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aß oligomer (AßO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AßO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aß aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AßO-exposed rats 21 days after AßO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aß aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.


Assuntos
Doença de Alzheimer , MicroRNAs , Fármacos Neuroprotetores , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Insulina/metabolismo , Masculino , Transtornos da Memória/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos
7.
Inflammopharmacology ; 30(1): 313-325, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35013876

RESUMO

Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.


Assuntos
Síndrome do Intestino Irritável , Acetatos , Ácido Acético , Animais , Ciclopropanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Modelos Teóricos , NF-kappa B/metabolismo , Fenótipo , Quinolinas , Ratos , Sulfetos
8.
Front Cell Infect Microbiol ; 12: 983089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619768

RESUMO

The gut microbiota undergoes significant alterations in response to viral infections, particularly the novel SARS-CoV-2. As impaired gut microbiota can trigger numerous neurological disorders, we suggest that the long-term neurological symptoms of COVID-19 may be related to intestinal microbiota disorders in these patients. Thus, we have gathered available information on how the virus can affect the microbiota of gastrointestinal systems, both in the acute and the recovery phase of the disease, and described several mechanisms through which this gut dysbiosis can lead to long-term neurological disorders, such as Guillain-Barre syndrome, chronic fatigue, psychiatric disorders such as depression and anxiety, and even neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These mechanisms may be mediated by inflammatory cytokines, as well as certain chemicals such as gastrointestinal hormones (e.g., CCK), neurotransmitters (e.g., 5-HT), etc. (e.g., short-chain fatty acids), and the autonomic nervous system. In addition to the direct influences of the virus, repurposed medications used for COVID-19 patients can also play a role in gut dysbiosis. In conclusion, although there are many dark spots in our current knowledge of the mechanism of COVID-19-related gut-brain axis disturbance, based on available evidence, we can hypothesize that these two phenomena are more than just a coincidence and highly recommend large-scale epidemiologic studies in the future.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Humanos , COVID-19/complicações , Eixo Encéfalo-Intestino , Disbiose , SARS-CoV-2 , Encéfalo
9.
Life Sci ; 287: 120088, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715145

RESUMO

Over the last decades, our knowledge of the key pathogenic mechanisms of Alzheimer's disease (AD) has dramatically improved. Regarding the limitation of current therapeutic strategies for the treatment of multifactorial diseases, such as AD, to be translated into the clinic, there is a growing trend in research to identify risk factors associated with the onset and progression of AD. Here, we review the current literature with a focus on the relationship between gastrointestinal (GI)/liver diseases during the lifespan and the incidence of AD, and discuss the possible mechanisms underlying the link between the diseases. We also aim to review studies evaluating the possible link between the chronic use of the most common GI medications and the future risk of AD development.


Assuntos
Doença de Alzheimer/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Hepatopatias/metabolismo , Doença de Alzheimer/epidemiologia , Animais , Gastroenteropatias/epidemiologia , Humanos , Hepatopatias/epidemiologia , Fatores de Risco
10.
Pharmacol Res ; 172: 105805, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371173

RESUMO

Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aß clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.


Assuntos
Doença de Alzheimer/genética , Doenças Metabólicas/genética , MicroRNAs , Doença de Alzheimer/metabolismo , Animais , Humanos , MicroRNAs/biossíntese
11.
Mol Neurobiol ; 58(10): 5327-5337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34297315

RESUMO

Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 µg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 µg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Insulina/farmacologia , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Epiderme/fisiologia , Hipoglicemiantes/farmacologia , Masculino , Crista Neural/citologia , Crista Neural/fisiologia , Células-Tronco Neurais/fisiologia , Ratos , Ratos Wistar , Células de Schwann/fisiologia
12.
Arch Med Res ; 52(8): 777-787, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34134920

RESUMO

BACKGROUND: The ongoing outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the latest threat to global health, causes overwhelming effects for the public healthcare systems worldwide. Of note, in addition to the respiratory complications, some patients with coronavirus disease 2019 (COVID-19) also develop serious cardiovascular injuries. Vasoactive peptides play an important role in a wide range of physiological and pathological conditions. AIM: With the urgent need for exploring the specific therapeutic targets and biomarkers for the emerging COVID-19, the general aim of this review is to discuss the potentials of the vasoactive peptides including Angiotensin II (Ang II), vasoactive intestinal peptide (VIP), endothelin-1 (ET-1), calcitonin gene-related peptide (CGRP), natriuretic peptides, substance P (SP) and bradykinin (BK) as therapeutic targets and/or prognostic indicators for the COVID-19 pandemic. CONCLUSION: Based on various observations some authors conclude that the assessment of vasoactive peptides shall be considered a routine part of COVID-19 patient monitoring, and they can serve as potential therapeutic targets for the disease management.


Assuntos
COVID-19 , Biomarcadores , Humanos , Pandemias , Peptídeos , SARS-CoV-2
13.
Eur J Pharmacol ; 885: 173502, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860811

RESUMO

Epidermal neural crest stem cells (EPI-NCSCs) are propitious candidates for cell replacement therapy and supplying neurotrophic factors in the neurological disorders. Considering the potential remyelinating and regenerative effects of fingolimod, in this study, we evaluated its effects on EPI-NCSCs viability and the expression of neurotrophic and oligodendrocyte differentiation factors. EPI-NCSCs, extracted from the bulge of rat hair follicles, were characterized and treated with fingolimod (0, 50, 100, 200, 400, 600, 1000, and 5000 nM). The cell viability was evaluated by MTT assay at 6, 24 and 72 h. The expression of neurotrophic and differentiation factors in the cells treated with 100 and 400 nM fingolimod were measured at 24 and 120 h. Fingolimod at 50-600 nM increased the cells viability after 6 h, with no change at the higher concentrations. The highest concentration (5000nM) induced toxicity at 24 and 72 h. NGF and GDNF genes expression were decreased at 120 h, but on the contrary, brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) were increased by both concentrations at both time points. Oligodendrocyte markers including platelet-derived growth factor receptor A (PDGFRα), neuron-glial antigen 2 (NG2) and growth associated protein 43 (GAP43) were elevated at 120 h, which was accompanied with reduce in stemness markers (Nestin and early growth response 1 (EGR1)). Fingolimod increased the expression of neurotrophic factors in EPI-NCSCs, and guided them to oligodendrocyte fate. Therefore, fingolimod in combination with EPI-NCSCs, can be considered as a promising approach for demyelinating neurological disorders.


Assuntos
Epiderme/metabolismo , Cloridrato de Fingolimode/farmacologia , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/efeitos dos fármacos , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Animais , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Relação Dose-Resposta a Droga , Epiderme/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Masculino , Fatores de Crescimento Neural/metabolismo , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos , Ratos Wistar
14.
Pharmacol Res ; 155: 104729, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126270

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional gene expression by targeting specific mRNAs for degradation or translation repression. Changes in miRNAs expression profiles have been reported in several neurodegenerative disorders such as Alzheimer's disease (AD) and related tauopathies, which are characterized by tau aggregation and neurofibrillary tangle formation (NFTs) in the brain. There is a fundamental challenge in determining how dysregulation of miRNAs can promote a pathological condition. Therefore, identifying the target genes of dysregulated miRNAs, signaling pathways and biological processes, as well as pathogenic factors which trigger miRNA dysregulation may be helpful for subsequent therapeutic development. This article reviews studies focused on the presently known roles of miRNAs in the regulation of alternative splicing and post-translational modifications of tau, events associated with the development of AD and related tauopathies. We hope this review will help readers understand the pathogenesis and the most recent therapeutic approaches to treat tauopathies.


Assuntos
Encéfalo/metabolismo , MicroRNAs , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Splicing de RNA
15.
J Nat Med ; 69(3): 324-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25762161

RESUMO

The analgesic and anti-inflammatory properties of Citrus aurantium L. blossoms essential oil (neroli) were investigated in mice and rats. The analgesic activity of neroli was assessed by acetic acid-induced writhing and Eddy's hot plate methods, while acute and chronic anti-inflammatory effects were investigated by inflammatory paw edema in rat and the cotton pellet-induced granuloma tissue model, respectively. Mechanistic studies were conducted using L-nitro arginine methyl ester (L-NAME), an inhibitor of NO synthase. Neroli significantly decreased the number of acetic acid-induced writhes in mice compared to animals that received vehicle only. Also, it exhibited a central analgesic effect, as evidenced by a significant increase in reaction time in the hot plate method. The oil also significantly reduced carrageenan-induced paw edema in rats. The inhibitory activity of neroli (especially at 40 mg/kg) was found to be very close to the standard drug, diclofenac sodium (50 mg/kg). In cotton pellet-induced granuloma, neroli was effective regarding the transudate and granuloma formation amount. Neroli was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) and twenty-three constituents, representing 91.0 % of the oil, were identified. The major components of neroli were characterized as linalool (28.5 %), linalyl acetate (19.6 %), nerolidol (9.1 %), E,E-farnesol (9.1 %), α-terpineol (4.9 %), and limonene (4.6 %), which might be responsible for these observed activities. The results suggest that neroli possesses biologically active constituent(s) that have significant activity against acute and especially chronic inflammation, and have central and peripheral antinociceptive effects which support the ethnomedicinal claims of the use of the plant in the management of pain and inflammation.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Citrus/química , Flores/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óleos de Plantas/farmacologia , Ratos Wistar , Sistemas do Segundo Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...